All Rights Reserved

Tertiary and Vocational Education Commission	
Diploma in Quantity Surveying	
NVQ Level 05 - Semester I	
Mathematical Concepts in Quantity Surveying	F45C002M01
Answer any five (05) questions only	Three Hours

(01)
(a) Using distance formula, show that the points $(-3,2)(1,-2)(9,-10)$ are
Collinear
(Marks - 06)
(b) Using sine rule and cosine rule, find the length of X and Y in the below triangle

(Marks - 06)
(c) The vertices of triangle are given below. Prove that whether the triangle is equilateral, isosceles or scalene triangle

$(1,-3)$
(Marks - 06)
(d) Find the gradient of below lines
(i)

(ii)

(Marks - 02)
(02) (a) Find the integration of below functions
(i) $\int 10 x^{4}-3 x-20 d x$
(ii) $\int x^{-\frac{1}{2}} d x$
(iii) $\int 3 \operatorname{cosec}^{2} x+\frac{1}{x} d x$
(Marks - 07)
(b) The following offset were taken in chain survey in an irregular boundary. The interval between offsets throughout the irregular boundary is 15 m .

Calculate area of irregular boundary using Simpson rule.

(Marks - 13)
(03) (a) Find the differentiation of
(i) $y=x+\sqrt{x}$
(ii) $y=\frac{x-3}{\sqrt{x}}$
(iii) $y=\left(e^{x}+5 x\right)(3 x+2)$
(Marks - 08)
(b) Find each limit
(i) $\lim _{x \rightarrow \infty}\left(\frac{1-x^{-2}+13 x^{2}}{5 x-27 x^{2}}\right)$
(ii) $\lim _{x \rightarrow 3}\left(\frac{\frac{1}{x}-\frac{1}{3}}{x-3}\right)$
(Marks - 05)
(c) Show that the limit does not exist

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{|x-1|}
$$

(04) (a) Solve the following equations
(i) $5(x-8)=3(x-2)$
(ii) $2 x+3 y=14$
$3 x+2 y=26$
(Marks - 06)
(b) A rectangle has a width of x cm and the height is 3 cm higher than its width
(i) Write the expression for perimeter of the rectangle
(ii) If perimeter is 18 cm find the width of rectangle
(Marks - 06)
(c) Solve below Quadratic equations
(i) $x^{2}-6 x-16=0$
(ii) $(x-9)(x-7)=43-7 x$
(Marks - 08)
(05)
(a) $A=\left[\begin{array}{ccc}-2 & 1 & 5 \\ 0 & -1 & 2 \\ 3 & 0 & 1\end{array}\right] \quad B=\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 2 & 0 \\ -1 & -3 & 4\end{array}\right]$

Find the value for the below
(i) $\quad 3 \mathrm{~A}+\mathrm{B}$
(ii) $\mathrm{A}-2 \mathrm{~B}$
(iii) BA
(Marks - 05)
(b) Find the X and Y value

$$
\left[\begin{array}{ccc}
2 x-y & 3 & 10 \\
y+1 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
19 & 3 & 10 \\
0 & -2 & 0
\end{array}\right]
$$

(Marks - 05)
(c) Find the determinant of the following matrixes
(i) $\quad A=\left[\begin{array}{cc}8 & 1 \\ -1 & 4\end{array}\right]$
(ii) $\quad B=\left[\begin{array}{cc}0 & 3 \\ -2 & 5\end{array}\right]$
(d) $\quad A=\left[\begin{array}{ll}2 & 3 \\ 2 & 4\end{array}\right] \quad B=\left[\begin{array}{cc}2 & -3 / 2 \\ -1 & 1\end{array}\right]$

Prove that B is the inverse matrix of A
(Marks - 06)
(06)
(a) (i) Write the general rules for graphical representation of data
(Marks - 04)
(ii) Explain the upper and lower control limits on a control chart using suitable sketch?
(Marks - 04)
(b) A survey on the heights (in cm) of 50 girls in a class X was conducted at a school and the following data were obtained

Height (in cm)	Number of girls
$120-130$	2
$130-140$	8
$140-150$	12
$150-160$	20
$160-170$	8
Total	$\mathbf{5 0}$

Find the mean, median and mode of the above data
(Marks - 08)
(c) If $\operatorname{Cos} \theta=4 / 5(0<\theta<\pi / 2)$, find the $\operatorname{Sin} \theta, \operatorname{Tan} \theta, \operatorname{Cosec} \theta, \operatorname{Cot} \theta, \operatorname{Sec} \theta$ values
(Marks - 04)

